THERMOCHEMISTRY OF THE COMPLEXES OF CHROMIUM NITRATE WITH L- α -AMINO ACIDS

S. Chen, X. Yang, Sh. Gao^{*}, R. Hu and Q. Shi

Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi'an 710069, P. R. China

(Received July 29, 2003; in revised form October 21, 2003)

Abstract

The solid complexes of Cr(NO₃)₃ with *L*- α -amino acids (*AA*=Val, Leu, Thr, Arg, Phe and Try) have been prepared in 95% alcoholic, the compositions of which were identified as the general formula Cr(AA)₂(NO₃)₃·2H₂O by elemental and chemical analyses. The bonding characteristics of the title complexes were characterized by IR, indicating that nitrogen and oxygen atoms in the ligands coordinated to Cr³⁺ in a bidentate fashion. With the aid of TG-DTG and IR techniques, the complexes were subjected to thermal decomposition in an atmosphere of oxygen, presuming that the decompositions of the complexes consist of two steps and the complexes were decomposed into chromium hemitrioxide after undergoing dehydration and skeleton splitting of the complexes. The constant volume energies of combustion of the complexes were determined by a RBC-II type rotating-bomb calorimeter. According to Hess's law, the standard enthalpies of formation of the complexes were calculated as (-1831.40±4.40), (-2542.03±6.13), (-1723.81±3.99), (-2224.31±3.02), (-2911.61±6.53) and (-659.32±7.42) kJ mol⁻¹, respectively.

Keywords: characterization, chromium nitrate, L- α -amino acids, solid complex, standard enthalpy of formation

Introduction

GTF, the indispensable cofactor of insulin, is a complex by amino acid and niacin coordination to microelement-chromium. Insulin does not keep the normal sugar metabolic unless GTF has affinity for its complexity [1]. *L*- α -amino acids are structural unit of protein, especially for Val, Leu, Thr, Arg, Phe and Try, which are essential to life and have to be absorbed from foods due to being not synthesized by organism. It is not surprising that a good understanding of coordination behavior of chromium with amino acids is basic to acquaintance with GTF. So, there is considerable practical and fundamental importance to focus on the complex of chromium and amino acids.

Regarding the complexes of chromium with valine, leucin, methionine and phenylalanine, the properties on spectrum, NMR and magnetism in mixture solvent

1388–6150/2004/ \$ 20.00 © 2004 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

^{*} Author for correspondence: E-mail: gaoshli@nwu.edu.cn

of water with alcohol have been reported [2-8]. It has been studied by Cooper on the structure, biological activity, chromatography, spectrum for the complexes of chromium with amino acids in the mole ratio of chromium to amino acid 1:2 and the relationship between the complexes and GTF [1]. Our research group [9] investigated the solubility property of the ternary of $Cr(NO_3)_3$ -His-H₂O, disclosed the existence of the new solid complexes of Cr(His)(NO₃)₃·3H₂O(A), Cr(His)₂(NO₃)₃·3H₂O (B) and $Cr(His)_3(NO_3)_3 \cdot 3H_2O(C)$, determined the enthalpy of the reaction of $Cr(NO_3)_3$ with histidine as well as calculated thermokinetic parameters and thermodynamic parameters. In our present work, six solid complexes of $Cr(AA)_2(NO_3)_3 \cdot 2H_2O$ of $Cr(NO_3)_3$ with L- α -amino acids (AA=Val, Leu, Thr, Arg, Phe and Try) have been prepared in 95% alcoholic and characterized by chemical analysis, elemental analysis, IR and TG-DTG techniques. The constant-volume energies of combustion of these complexes were determined by a RBC-II-type rotating-bomb calorimeter, and the standard enthalpies of formation of these complexes were calculated as well. Obviously, this work enriches the thermochemical database and provides a theoretical basis for new applications of the title complexes.

Experimental

Preparations and compositions of the complexes

Cr(NO₃)₃·9H₂O and L- α -amino acids were blended with the molar ratio of 1:2 in 95% alcoholic. After refluxing on 70–80°C water bath for 6 h, the solution was condensed to remove a large amount of alcoholic, filtered and the aim products are obtained and identified as Cr(Val)₂(NO₃)₃·2H₂O (A), Cr(Leu)₂(NO₃)₃·2H₂O (B), Cr(Thr)₂(NO₃)₃·2H₂O (C), Cr(Arg)₂(NO₃)₃·2H₂O (D), Cr(Phe)₂(NO₃)₃·2H₂O (E) and Cr(Try)₂(NO₃)₃·2H₂O (F) by chemical and elemental analyses. Cr(NO₃)₃·9H₂O (Beijing Hongxing Chemical Plant, A.R.) and *L*- α -amino acids were recrystallized with the purity of 99.95%. The purity of the complexes is greater than to 99.99% checked by HPLC. The analytical results on the compositions of the complexes are summarized in Table 1.

Apparatus and experimental procedures

It is a RBC- Π -type rotating-bomb calorimeter by which the constant-volume energy of combustion of the complex was determined [10]. Based on a RBC- Π -type rotating-bomb [11], a RBC- Π -type rotating-bomb with digital indicator wherein integrated circuit was employed, aiming at promoting the precision and accurate of the experimental thermochemistry, was developed. The accurate uncertainty of the present calorimeter has been reduced from $1.6 \cdot 10^{-3}$ to $4.68 \cdot 10^{-4}$ by calibration for the standard benzoic acid of purity of 99.999%. Benzoic acid has an isothermal heat of combustion at 25° C of -26434 J g⁻¹. The calibrated experimental results are presented in Table 2. The calibration for the apparatus and temperature, the determination processes of the experiment as well as the analyses of final products are identical with [10].

Complex	Cr ³⁺	С	Н	N
А	10.30 (10.23)	23.69 (23.63)	5.18 (5.16)	13.74 (13.78)
В	9.54 (9.69)	26.92 (26.87)	5.69 (5.64)	13.02 (13.06)
С	10.03 (10.15)	18.79 (18.76)	4.38 (4.33)	13.62 (13.67)
D	8.32 (8.35)	23.19 (23.16)	5.22 (5.18)	24.72 (24.75)
Е	8.51 (8.60)	35.84 (35.77)	4.39 (4.34)	11.54 (11.59)
F	7.72 (7.62)	38.85 (38.72)	4.18 (4.149	14.32 (14.37)

Table 1 Analytical results of compositions of complexes (%)*

*Cr³⁺ is determined complexometrically with ammonium ferrous sulfate.

Carbon, hydron and nitrogen analyses are performed on a 2400 – type elemental analyzer of PE company. The data in brackets are calculated values.

 Table 2 Calibrated experimental results for the energy equivalent of the calorimeter using benzoic acid

No	Mass of benzoic acid <i>a</i> /g	Calibrated heat of combustion wire % <i>q</i> _c /J	Calibrated heat of acid containing nitrogen $q_{\rm N}/{ m J}$	Calibrated $\Delta T/K$	Energy equivalent of calorimeter $W/J K^{-1}$
1	0.76823	10.80	23.96	1.1281	18032.22
2	0.80052	12.60	25.22	1.1783	17990.98
3	0.86965	12.60	22.70	1.2808	17975.97
4	0.81237	11.70	23.06	1.1959	17985.58
5	0.80250	12.60	24.28	1.1802	18005.56
6	0.79825	12.60	24.03	1.1734	18013.95
Mean					18007.71 8.42

The IR spectra of the compounds were run on a Bruker EQ UINOX-550 model infrared spectrophotometer, within the range 4000–400 cm⁻¹ range and the solid samples were pressed into KBr pellets. All TG-DTG tests were performed with a Perkin Elmer thermogravimetric instrument. The purge gas was oxygen flow of 60 mL min⁻¹. A heating rate of 10°C min⁻¹ was adopted, with samples weighing about 1 mg. Carbon and hydrogen contents were determined by microanalytical procedures, with a 2400-type elemental analyzer from PE instrument.

Results and discussion

IR spectra of the complexes

The IR absorption of main groups for the complexes and ligands are depicted in Table 3, which are interpreted as follows [12, 13]:

Table 3 D	ata of IR al	osorption fc	or main grou	tps of ligan	ids and com	iplexes (cm	1 ⁻¹)					
Comp.	$f V^{as}_{NH_3^+} \ V^{as}_{NH_2}$	$f v_{ m NH_3^+}^{ m s}$ $f v_{ m NH_3^+}^{ m s}$	$\delta^{as}_{NH_3^+} \\ \delta^{as}_{NH_2}$	$\delta^{s}_{NH_{3}^{+}}$ $\delta^{s}_{NH_{2}}$	$v_{\rm COO^-}^{\rm as}$	V ^s coo-	Мон	Мон	VCOH	$V_{C_6H_5}$	$\mathbf{v}_{\mathrm{CCN}}^{\mathrm{as}}$	V ^s _{CCN}
Val	3455	2977	1615	1506	1600	1426			I	I	I	
Leu	3454	2958	1613	1514	1583	1407	Ι	Ι	Ι	I	I	I
Thr	3441	2959	1627	1456	1564	1417	I	I	1107	I	I	I
Arg	3301	3097	1683	1561	1614	1420	I	I	I	Ι	Ι	I
Phe	3028	2130	1629	1496	1567	1413	Ι	Ι	Ι	1074	Ι	Ι
Try	3404	3038	1667	1456	1591	1357	Ι	Ι	Ι	Ι	1315	743
A	3091	2973	1657	1453	1522	1384	3409	824	Ι	Ι	Ι	I
В	3091	2963	1662	1458	1523	1385	3409	825	I	I	Ι	I
С	3080	2979	1664	1384	1508	1384	3410	825	1111	I	Ι	I
D	3205	2977	1655	1453	1633	1350	3409	826	Ι	Ι	Ι	Ι
Е	3031		1662	1457	1522	1585	3398	823	Ι	1081	Ι	Ι
ш	3057	2973	1658	1457	1509	1385	3407	823	I	I	1319	744

J. Therm. Anal. Cal., 76, 2004

268

CHEN et al.: CHROMIUM NITRATE WITH L- -AMINO ACIDS

- To the complexes, the characteristic absorption peaks of amino and carboxyl groups have a great shift as compared to those in the free ligand. It indicated that nitrogen and oxygen atoms in the complexes coordinate to Cr^{3+} in a bidentate fashion.
- The characteristic absorption peaks of hydroxyl, benzol and indolyl group in the complexes have a little shift compared with the related ligands of Thr, Phe and Try, which is attributable to the environment effect. It is confirmed that the hydroxyl, benzol and indolyl groups do not participate in coordination to chromium.
- The characteristic absorption of 3390–3423 and 823–828 cm⁻¹ in the complexes are assigned to that of water, which is evidence for the presence of water molecule in the complexes.

Thermostability of the complexes

The TG-DTG curves of the complexes are presented in Fig. 1. The appearance of peaks in the TG-DTG curves suggested that the thermal decompositions of the complexes consist of two steps. For the complex of A–C, the first stage start at 51°C and complete at 335, 300 and 279°C, accompanying with 53.35, 55.50 and 53.46% mass loss. There are in good agreement with the calculated value of the mass loss of 53.17, 55.62 and 53.53%, corresponding to the skeleton splitting of the complexes. In the second step of 300–522°C, the skeletons of the complexes are further splitted, and the complexes completely collapse and transformed into the final product. This process proceeded with 31.44, 30.18 and 32.05% mass loss, which coincide with the calculated value of the mass loss 31.88, 30.21 and 31.63%, preliminarily showing the final product is chromium hemitrioxide. In order to

Fig. 1 TG curves for the complexes in an atmosphere of oxygen

acquire insight into the decomposition pathway for the complexes of A–C, decomposition–interruption tests were conducted with TG-DTG experiments and the infrared analyses of the residual matter before and after thermal decomposition were performed. The experimental results show that, the IR spectrum of the final product is identical with that of the standard spectrum Cr_2O_3 when IR spectrum of the residual products after the first stages fit with that of $Cr(NO_3)_3$ [14].

Complex	Decomposition product	Decomposition temp./°C	Residual rate/%
٨	Cr(NO ₃) ₃	51-298-335 ^a	46.65 (46.83) ^b
А	Cr_2O_3	335-411-522	14.77 (14.95)
В	Cr(NO ₃) ₃	51-270-300	44.50 (44.38)
	Cr_2O_3	300-373-488	14.32 (14.17)
С	Cr(NO ₃) ₃	51-256-279	46.54 (46.47)
	Cr_2O_3	279-399-522	14.49 (14.84)
D	2Cr(Arg) ₂ (NO ₃) ₃ 3Cr(NO ₃) ₃	51-304-353	60.56 (60.63)
D	Cr_2O_3	353-387-577	12.42 (12.21)
Е	2Cr(Phe) ₂ (NO ₃) ₃ 7Cr(NO ₃) ₃	51-250-350	51.12 (51.53)
	Cr_2O_3	350-457-512	12.53 (12.58)
Б	9Cr(Try) ₂ (NO ₃) ₃ 10Cr(NO ₃) ₃	51-377-474	63.85 (63.22)
ľ	Cr ₂ O ₃	474–547–696	11.36 (11.14)

Table 4 Thermoanalytical results of the complexes

As to the complexes of D–F, the first decomposition steps begin at 51°C and end at 353, 350 and 474°C with the observed mass losses of 39.44, 48.88 and 36.15%, respectively, when the calculated values are 39.37, 48.47 and 36.78%. The corresponding mass losses are due to the decomposition of the partial removal of the ligands of Arg, Phe and Try. IR analyses show that the spectrum of the residual product are identified as overlapping spectrum of the compounds of $Cr(NO_3)_3$ and $Cr(AA)_2(NO_3)_3$ (*AA*=Arg, Phe and Try). The final stages occur at 470–700°C, accompanying with the mass loss of 48.36, 38.59 and 52.49% which comply with the calculated value of 48.42, 38.95 and 52.08%. The final product corresponds to the compound of Cr_2O_3 as confirmed by IR analysis [14].

In accordance with the IR spectra and TG-DTG experiments described above, it is assumed that the thermal decomposition processes for the complexes are summarized in Table 4.

The constant volume energy of combustion and standard enthalpy of formation for the complexes

The constant-volume energies of combustion of the complexes determined by a RBC- Π -type rotating-bomb calorimeter are summarized in Table 5.

Comp.	No.	Mass of sample, <i>a</i> /g	Calibrated heat of combustion wire, <i>q</i> _c /J	Calibrated heat of acid cont. nitrogen, $q_{\rm N}/{ m J}$	Calibr. $\Delta T/K$	Combustion energy of samples, $-\Delta_{c, \ coor} E/J \ g^{-1}$
	1	1.06737	12.60	176.77	0.7577	12600.85
	2	1.10021	11.70	182.21	0.7786	12562.55
	3	1.00536	12.60	166.50	0.7115	12560.54
А	4	0.99285	12.60	164.43	0.7052	12607.21
	5	0.99587	9.90	164.93	0.7064	12592.88
	6	1.00029	12.60	165.66	0.7086	12573.40
	mean					12582.91 8.20
	1	0.85636	12.60	72.09	0.7036	14690.80
	2	0.91274	12.60	76.83	0.7496	14685.34
Ð	3	0.87510	11.70	73.66	0.7180	14671.64
В	4	0.88476	10.80	74.48	0.7273	14700.75
	5	0.84698	12.60	71.30	0.6948	14667.40
	6	0.88720	12.60	74.68	0.7289	14690.53
	mean					14684.41 5.15
	1	1.20536	12.60	168.47	0.6837	10060.08
	2	1.15430	11.70	161.33	0.6539	10047.84
G	3	1.16722	12.60	163.14	0.6600	10027.87
C	4	1.17089	12.60	163.65	0.6647	10068.26
	5	1.05424	12.60	147.35	0.5990	10075.86
	6	1.11540	12.60	155.90	0.6314	10038.68
	mean					10053.10 7.46
	1	0.98526	12.60	108.91	0.6803	12305.76
	2	0.99360	11.70	109.83	0.6857	12300.28
D	3	0.98394	10.80	108.76	0.6782	12285.83
	4	1.00357	12.60	110.95	0.6914	12287.33
	5	1.01062	12.60	111.71	0.6970	12291.65
	6	0.99436	12.60	109.92	0.6859	12293.50
	mean					12292.56 4.01
	1	1.00156	11.70	104.86	0.7857	14004.75
Б	2	0.99630	12.60	104.36	0.7828	14025.94
E	3	0.98725	12.60	103.36	0.7736	13987.73
	4	0.98841	9.90	103.48	0.7748	13995.78

Table 5 The experimental results for the energies of combustion of the complexes

Comp.	No.	Mass of sample, <i>a</i> /g	Calibrated heat of combustion wire, <i>q</i> _c /J	Calibrated heat of acid cont. nitrogen, $q_{\rm N}/{ m J}$	Calibr. Δ <i>T</i> /K	Combustion energy of samples, $-\Delta_{c, \text{ coor}} E/J \text{ g}^{-1}$
Б	5	1.01548	12.60	106.32	0.7947	13969.99
E	6	1.03069	12.60	107.91	0.8104	14036.49
	mean					14003.45 10.04
	1	0.88450	12.60	165.34	0.9165	18450.78
	2	0.85220	12.60	159.30	0.8809	18405.22
Б	3	0.90026	11.70	168.29	0.9302	18399.43
ľ	4	0.86532	10.80	161.75	0.8970	18460.32
	5	0.86835	12.60	162.32	0.8990	18434.64
	6	0.85478	12.60	159.78	0.8843	18420.70
	mean					18428.52 9.99

Table 5 Continued

The standard enthalpies of combustion of the complexes, $\Delta_{c,coor} H_m^{\theta}$, refer to the enthalpy changes of combustion of the following ideal combustion reactions at 298.15 K and 101.325 kPa.

$$Cr(Val)_{2}(NO_{3})_{3} \cdot 2H_{2}O(s) + 39/4O_{2}(g) =$$

=1/2Cr₂O₃(s)+10CO₂(g)+13H₂O(l)+5/2N₂(g) (1)

$$Cr(Leu)(NO_3)_3 \cdot 2H_2O(s) + 51/4O_2(g) =$$

=1/2Cr₂O₃(s)+12CO₂(g)+15H₂O(l)+5/2N₂(g) (2)

$$Cr(Thr)_{2}(NO_{3})_{3} \cdot 2H_{2}O(s) + 23/4O_{2}(g) =$$

=1/2Cr₂O₃(s)+8CO₂(g)+11H₂O(l)+7/2N₂(g) (3)

$$Cr(Arg) (NO_3)_3 \cdot 2H_2O(s) + 53/4O_2(g) =$$

=1/2Cr₂O₃(s)+12CO₂(g)+16H₂O(l)+11/2N₂(g) (4)

$$Cr(Phe)_{2}(NO_{3})_{3} \cdot 2H_{2}O(s) + 71/4O_{2}(g) =$$

=1/2Cr₂O₃(s)+18CO₂(g)+13H₂O(l)+5/2N₂(g) (5)

$$Cr(Try)_{2}(NO_{3})_{3} \cdot 2H_{2}O(s) + 89/4O_{2}(g) =$$

=1/2Cr₂O₃(s)+10CO₂(g)+13H₂O(l)+5/2N₂(g) (6)

The standard enthalpies of combustion of the complexes are calculated from the energies of combustion by the Eqs (1)–(6).

$$\Delta_{\rm c,coor} H^{\theta}_{\rm m} = \Delta_{\rm c,coor} E + \Delta n R T \tag{7}$$

where, n_{gas} represents the total amount (in moles) of gas present as products or as reactants, $R=8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$, T=298.15 K. The results of the calculations are also shown in Table 6.

Complex	$-\Delta_{c, coor}E$	$-\Delta_{ m c,\ coor}H_{ m m}^{ m heta}$	$-\Delta_{\mathrm{f,coor}} H_{\mathrm{m}}^{\mathrm{ heta}}$
А	6396.36 4.17	6389.54 4.17	1831.20 4.40
В	12252.31 5.73	12249.83 5.73	2542.03 6.13
С	5150.02 3.82	5138.25 3.82	1723.81 3.99
D	7651.47 2.50	7640.94 2.50	2224.31 3.02
Е	8464.03 6.07	8457.21 6.07	2911.61 6.53
F	12577.43 6.82	12569.37 6.82	659.32 7.42

Table 6 Energies of combustion, standard enthalpies of combustion and standard enthalpies of formation for the complexes (kJ mol⁻¹)

The standard enthalpies of formation of the complexes, $\Delta_{f,coor} H_m^{\theta}$, are calculated by Hess's law according to the thermochemical Eqs (1)–(6).

$$\Delta_{\rm f,A(s)}H_{\rm m}^{\theta} = [0.5\Delta_{\rm f,Cr_{2}O_{3}(s)}H_{\rm m}^{\theta} + 10\Delta_{\rm f,CO_{2}(g)}H_{\rm m}^{\theta} + 13\Delta_{\rm f,H_{2}O(l)}H_{\rm m}^{\theta}] - \Delta_{\rm c,A(s)}H_{\rm m}^{\theta}$$
(8)

$$\Delta_{f,B(s)} H_{m}^{\theta} = [0.5\Delta_{f,Cr_{2}O_{3}(s)} H_{m}^{\theta} + 12\Delta_{f,CO_{2}(g)} H_{m}^{\theta} + 15\Delta_{f,H_{2}O(l)} H_{m}^{\theta}] - \Delta_{c,B(s)} H_{m}^{\theta}$$
(9)

$$\Delta_{f,C(s)} H^{\theta}_{m} = [0.5\Delta_{f,Cr_{2}O_{3}(s)} H^{\theta}_{m} + 8\Delta_{f,CO_{2}(g)} H^{\theta}_{m} + 11\Delta_{f,H_{2}O(l)} H^{\theta}_{m}] - \Delta_{c,C(s)} H^{\theta}_{m}$$
(10)

$$\Delta_{f,D(s)}H_{m}^{\theta} = [0.5\Delta_{f,Cr_{2}O_{3}(s)}H_{m}^{\theta} + 12\Delta_{f,CO_{2}(g)}H_{m}^{\theta} + 16\Delta_{f,H_{2}O(l)}H_{m}^{\theta}] - \Delta_{c,D(s)}H_{m}^{\theta}$$
(11)

$$\Delta_{f,E(s)} H^{\theta}_{m} = [0.5\Delta_{f,Cr_{2}O_{3}(s)} H^{\theta}_{m} + 18\Delta_{f,CO_{2}(g)} H^{\theta}_{m} + 13\Delta_{f,H_{2}O(l)} H^{\theta}_{m}] - \Delta_{c,E(s)} H^{\theta}_{m}$$
(12)

$$\Delta_{f,F(s)} H_{m}^{\theta} = [0.5\Delta_{f,Cr_{2}O_{3}(s)} H_{m}^{\theta} + 22\Delta_{f,CO_{2}(g)} H_{m}^{\theta} + 14\Delta_{f,H_{2}O(l)} H_{m}^{\theta}] - \Delta_{c,F(s)} H_{m}^{\theta}$$
(13)

where $\Delta_{f, Cr_2O_3(s)} H_m^{\theta} = -1139.70 \text{ kJ mol}^{-1}$, $\Delta_{f, Co_2(g)} H_m^{\theta} = (-393.51\pm0.13) \text{ kJ mol}^{-1}$, $\Delta_{f, H_2O(l)} H_m^{\theta} = (-285.83\pm0.042) \text{ kJ mol}^{-1}$ [15]. The energies of combustion, the standard enthalpies of combustion and the standard enthalpies of formation of the complexes are presented in Table 6. Obviously, the standard enthalpies of formation of the complexes vary with the structures of amino acids.

* * *

We thank the National Science Foundation of China for financial support.

References

- 1 J. Cooper, L. Blackwell and P. Buckley, Inorg. Chim. Acta, 92 (1984) 23.
- 2 Z. Staszak, M. Ciesslak-Golonka and M. Raczko, Spectrosc. Lett., 25 (1992) 349.
- 3 A. M. Calafat, J. J. Fiel, A. Terron, V. Moreno, D. M. L. Goodgame and I. Hussian, Inorg. Chem. Acta, 169 (1990) 133.
- 4 R. Shanthi, K. S. Nagaraja and M. R. Udupa, Indian J. Chem. Soc A., 29A (1990) 189.
- 5 K. Gielazk and W. Wojciechowski, Chem. Paper, 48 (1994) 380.
- 6 M. El-Shahawi, Transition Met. Chem. Soc. Jpn., 64 (1991) 3463.

- 7 V. R. Fisher, T. A. Nasonoxa, K. M. Yakubov, V. K. Voronkova, L. V. Mosina and Y. V. Yabwkov, J. Inorg. Chem., (RUSS), 35 (1990) 2279.
- 8 P. D. Julio and D. S. Teresm, Polyhedron, 10 (1991) 575.
- 9 S. L. Gao, M. Ji and S. P. Chen, Acta Chimica Sinica (in China), 59 (2001) 931.
- 10 J. R. Liu, X. W. Yang and Y. D. Hou, Thermochim. Acta, 329 (1999) 123.
- 11 X. F. Yang, X. W. Yang and L. Z. Sun, J. Chinese Univ. (in China), 7 (1986) 363.
- 12 Q. N. Dong, Infrared Spectrometry, Chinese standard Press, Beijing 1979.
- 13 K. Nakamoto, D. J. Huang and R. Q. Wang, Translated: Infrared and Raman Spectra of Inorganic and Coordination Compounds, Chemical and Industrial Press., Beijing 1991, p. 276.
- 14 A. Małecki, B. Małecka, R. Gajerski and S. Łabuś, J. Therm. Anal. Cal., 72 (2003) 135.
- 15 D. D. Wagman, W. H. Evans, V. B. Pariker, T. H. Liu and M. K. Zhao, Translated. NBS of Chemical Thermodynamic Properties, Chinese standard Press, Beijing 1998.